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Abstract
Respiratory syncytial virus (RSV) is the principal cause of bronchiolitis in infants and a sig-

nificant healthcare problem. The RSV Glycoprotein (G) mediates attachment of the virus to

the cell membrane, which facilitates interaction of the RSV Fusion (F) protein with nucleolin,

thereby triggering fusion of the viral and cellular membranes. However, a host protein ligand

for G has not yet been identified. Here we show that CX3CR1 is expressed in the motile cilia

of differentiated human airway epithelial (HAE) cells, and that CX3CR1 co-localizes with

RSV particles. Upon infection, the distribution of CX3CR1 in these cells is significantly

altered. Complete or partial deletion of RSV G results in viruses binding at least 72-fold less

efficiently to cells, and reduces virus replication. Moreover, an antibody targeting an epitope

near the G protein’s CX3CR1-binding motif significantly inhibits binding of the virus to air-

way cells. Given previously published evidence of the interaction of G with CX3CR1 in

human lymphocytes, these findings suggest a role for G in the interaction of RSV with cili-

ated lung cells. This interpretation is consistent with past studies showing a protective bene-

fit in immunizing against G in animal models of RSV infection, and would support targeting

the CX3CR1-G protein interaction for prophylaxis or therapy. CX3CR1 expression in lung

epithelial cells may also have implications for other respiratory diseases such as asthma.

Introduction
RSV is responsible for more than 500,000 emergency room visits and over 50,000 hospitaliza-
tions annually in the U.S. alone [1–3]. While a prophylactic antibody called palivizumab is
available for infants at high risk of severe RSV, there is no vaccine and no specific treatment for
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this infection. Therefore, there is considerable interest in improving our understanding of the
pathogen, its interaction with its target organs, and in particular the initial events of viral entry
into cells.

The F protein of RSV interacts directly with nucleolin, a proposed RSV receptor, and medi-
ates the fusion of the viral and cellular membranes, thereby initiating infection [4, 5]. The anti-
body palivizumab neutralizes RSV by binding to F, and the F protein itself is being investigated
as a vaccine antigen [6]. Prior to membrane fusion, additional mechanisms appear to facilitate
binding of RSV to cells. For example, heparan sulfate proteoglycans (HSPG) are used by RSV to
attach to continuous cell lines [7]. An HSPG-binding region has been observed in the F protein
and it has been proposed that this structural element is sufficient to attach virus to cell lines
expressing HSPG [8]. The G protein of RSV, which was identified as the RSV attachment pro-
tein [9] has an analogous domain [10]. However, HAE cells are reported not to express HSPG
[11] and while it has been hypothesized that G protein mediates attachment of RSV through its
interaction with the host fractalkine receptor CX3CR1 [12–14], data to support this view were
not based on observations in differentiated lung cells. Nevertheless, several observations bolster
the case for a G-CX3CR1 binding interaction having an important role in RSV infections. For
example, Choi et al. have shown that antibodies against the central conserved domain of G
block its interaction with CX3CR1 expressed recombinantly [15], and Zhang et al. have further
demonstrated that blocking the G-CX3CR1 interaction by vaccination against the same domain
afforded protection against RSV in a mouse model [16] and that human sera from recently vac-
cinated or infected children inhibited the interaction in vitro [17].

CX3CR1 is known to be expressed in T cells and monocytes [18] as well as microglia [19,
20] and neurons [21], but its expression in differentiated HAE cells and its proposed role in
RSV infection of these cells have not been described in the scientific literature. Here we use dif-
ferentiated HAE cell cultures, immunofluorescence, confocal microscopy, and molecular virol-
ogy to show that CX3CR1 is expressed in ciliated cells targeted by RSV and that an antibody to
G protein, or deletion of G, inhibits virus binding to HAE cells and reduces viral replication
significantly. We propose that these data, together with past findings on the interaction of G
and CX3CR1 in other cell types, suggest a role for G in the interaction of RSV with HAE via
CX3CR1. If this interaction is confirmed to be physiologically relevant, it may have implica-
tions for the development of future vaccines or therapeutics.

Results and Discussion
We selected differentiated HAE cell cultures for our studies because they are made by seeding
primary airway cells obtained from a human donor in a culture system which allows them to
differentiate into cell types observed in the human airway epithelium [22] and presumably cor-
respond more directly to human lung tissue than established cell lines. Mucin-producing goblet
cells as well as motile ciliated cells (S1 Fig, S1 Movie) are observed in this model system,
enabling studies of numerous respiratory pathogens, including RSV [11, 23–30].

Using confocal microscopy and immunofluorescence detection of β-tubulin and CX3CR1,
it is apparent that CX3CR1 is expressed exclusively in ciliated cells, and is localized in motile
cilia (Fig 1). Isotype control immunodetection shows minimal background fluorescence under
the same conditions, and when using alternative secondary antibodies. At 1 day post-infection,
punctate CX3CR1 immunofluorescence in the vicinity of the nuclei is seen in infected cells.
This pattern is accentuated by day 3 as the structures positive for CX3CR1 appear to become
larger (Fig 1C).

We then proceeded to investigate the interaction of RSV with HAE cells and CX3CR1. Con-
focal immunofluorescence imaging of RSV binding to cells reveals an almost exclusive
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Fig 1. CX3CR1 is expressed in human airway epithelial cells and is localized to the motile cilia.HAE cells were grown in an air-liquid interface (ALI)
culture system until differentiation was achieved, and imaged by confocal immunofluorescence. (a) Anti-β-tubulin (green) and anti-CX3CR1 (red)
immunodetection of the cells seen en face are shown individually and merged (scale bar 10 μm). An xz plane image (XZ Merge) further illustrates the
localization of CX3CR1 in motile cilia (scale bar 5 μm). Nuclei, stained with DAPI, are rendered in blue. (b) Immunostaining with isotype control antibodies
confirms the specificity of the immunostaining. The merge image and XZ merge image are in planes that cross nuclei to confirm the presence of cells and the
absence of non-specific immunostaining. (c) Confocal immunofluorescence images of differentiated HAE cells. Cells were either infected with RSV strain
MSA1 (top and bottom rows), or mock infected (middle row). Images were acquired either two hours (left two columns), 1 day (middle two columns), or 3 days
(right two columns) after infection or mock infection. CX3CR1 immunofluorescence is shown in (purple) (top two rows), or using an isotype negative control
(bottom row). The cells were also stained for nuclei using DAPI (blue). Two representative images are shown for each condition tested. The 2-hour time point
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interaction of virions with the cilia of ciliated cells (Fig 2A; S2 Movie). This pattern is consistent
with the ciliated cell tropism of RSV observed when the infection is allowed to proceed for a
few days (Fig 2D) [24]. Moreover, simultaneous detection of β-tubulin, CX3CR1, and RSV F
demonstrates that virions and CX3CR1 are tightly colocalized at the distal end of cilia (Fig 2B;
S2 Fig). As seen in Fig 1C, cultures allowed to incubate for 3 days after infection display a new
distribution of CX3CR1 in RSV-infected cells in which the CX3CR1 immunostaining is now
localized to one or more vesicles found near the nucleus (Fig 2C; S3 Movie). This redistribution
of CX3CR1 appears as early as 1 day post-infection and is not observed in non-infected cells in
the same culture or in control mock-infected cultures of the same age (Fig 1C).

To probe the RSV-CX3CR1 interaction further, we performed HAE cell binding experi-
ments using RSV mutants. Starting from an antigenomic cDNA of the clinical RSV isolate
MSA1, the entire G protein open reading frame or the C-terminal ~60% (from the CX3C motif
to the C terminus) were deleted (S1 File). In a combined analysis of four experiments, the G
protein deletion mutant exhibited a significant 116-fold reduction of binding signal, as mea-
sured by fluorescence intensity compared to wild type, and the G protein C-terminal deletion
mutant showed a significant 72-fold reduction (Fig 3A and 3B). Counting of fluorescence spots
also showed significantly reduced numbers in the G mutants (not shown).

We investigated the consequences on viral replication of the disruption of the G-CX3CR1
interaction. Mutant or wild type virus were allowed to replicate for 7 days during which daily
washes of the apical surface of the cultures were collected and assayed for virus titer. This assay
does not measure accumulation of virus in culture over time, as in a standard growth kinetics
curve, but rather quantifies virus produced in consecutive 24-hour periods. As seen in Fig 3,
viruses lacking full-length RSV G replicated at significantly (about ten-fold) lower rates
throughout the experiment (Fig 3C). For all viruses the replication rate appears biphasic, with a
first peak on day 2, a minimum on day 4 or 5, followed by a second increase on days 6 and 7.

We also looked at the effect of the antibody 131-2G on virus binding to cells (Fig 4). This
antibody has been shown to bind to a conserved epitope near the CX3C motif of the G protein
and to inhibit the G-CX3CR1 interaction [12, 31]. Pre-incubation of RSV with 131-2G inhibits
the interaction of RSV with HAE cells. These data indicate that the association of RSV with
cilia is inhibited by disrupting the interaction of G protein and CX3CR1.

Using differentiated HAE cells, it has been reported that RSV exclusively infects ciliated
cells and that infection leads to the production of a number of cytokines that have been
observed in infected infants and in animal models [23–28]. Our data indicate that CX3CR1
localized in the motile cilia of differentiated HAE cells interacts with the G protein of RSV and
facilitates binding of the virus to these cells, thereby enhancing infection efficiency. The previ-
ous observation of bitter taste receptors in the motile cilia of HAE cells supports the plausibility
of finding other G-protein-coupled receptors such as CX3CR1 in these organelles [32].

A role for CX3CR1 in asthma has been proposed [33] and its expression in HAE may have
implications for this and other respiratory conditions. A study of CX3CR1-expression in CD8
+ T cells of infected infants has shown reduced CX3CR1 expression and an inverse correlation
between expression level and wheezing duration [34]. In combination with a previous report
that fractalkine is expressed in HAE cells [35], our observations indicate that both receptor and
ligand are expressed in lung epithelium, suggesting that further investigations of the fractalkine
signaling axis may yield additional information on lung physiology and disease.

images are of an xy plane above the nuclei, intersecting the motile cilia. CX3CR1 immunofluorescence is clearly detected in the cilia of both infected and
uninfected cells but is absent in the isotype control samples. The 1-day and 3-day time points are in an xy plane crossing the nuclei, 4.3 μm below the motile
cilia.

doi:10.1371/journal.pone.0130517.g001
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Replication of RSV in HAE cells is significantly but not completely inhibited by disrupting
the G-CX3CR1 interaction (Fig 3C). Even without its G protein, it is likely that RSV is still
capable of infecting HSPG-expressing basal cells present in the pseudostratified epithelium of
the culture system [11, 36], through interaction of F protein with HSPG and its receptor [4, 5].
The fact that the replication rate is biphasic with an increase after day 5 may be due to
increased disruption of the apical cell layer during the course of the infection, allowing progres-
sively more infection of basal cells [36] after an initial burst of replication in ciliated cells. In a
healthy human host, an active immune system may take advantage of the reduced fitness of
RSV lacking a functional G protein to better control its replication and prevent its transmis-
sion. This is consistent with the observation that G is necessary for efficient RSV replication in
vivo, including humans, [37–39] and would explain why G is maintained in RSV despite its
apparent redundancy in established cell lines.

There have been significant developments in recent years that may help in the development
of a vaccine against RSV, as reviewed by Guvenel et al. and references therein [40]. The F pro-
tein has been a target of particular interest for vaccine design due to the discovery of new epi-
topes such as site Ø which are only present in the pre-fusion conformation of F and which
elicit particularly potent neutralizing responses in vivo [6]. F is often considered a more

Fig 2. CX3CR1 in differentiated HAE cells interacts with RSV. Differentiated HAE cells, grown as in Fig 1, were incubated with RSV and imaged by
immunofluorescence and confocal microscopy. (a) Binding experiment meant to visualize viral particles in association with HAE cells. Cultures were
incubated 2h with RSV, then fixed and processed. RSV virions appear in green, β-tubulin is shown in red, and CX3CR1 is colored purple. Two regions of
interest, representative of other RSV-bound cells in this image, are outlined with white squares. The top one is shown in expanded views in b, and the other
one is shown in S2 Fig. Red, green, and purple images corresponding to β-tubulin, RSV F, and CX3CR1 respectively, are shown individually. Also shown is a
merged image combining the fluorescence channels for RSV F, CX3CR1, and motile cilia. (c) Infected HAE cells were incubated for 3 days after infection and
imaged using the same antibodies and fluorophores as in a and b but pseudo-colored differently: β-tubulin is in blue, RSV F in green, and CX3CR1 is shown
in red. The two images are xy planes of the same sample separated along the z axis by 3.7 μm. The bottom image shows cilia and apical cell body, including
some purple color indicative of colocalized tubulin and CX3CR1 immunofluorescence. The top image crosses the plane of the nuclei, below the cilia. Only
infected cells (green) are surrounded by red-colored CX3CR1-positive circular features. Uninfected cells in the same sample and cells from uninfected
control samples do not show these CX3CR1-containing structures (see Fig 1C). (d) Confocal immunofluorescence of HAE cells grown, differentiated, and
infected for 3 days with RSV strain MSA1. Both en face (xy) and side (xz and yz) views are shown in this image. The xy plane of the en face view mostly cuts
through the cilia of the cells, above the cell body. Nuclei are shown in blue using DAPI and, as in panel a, anti-RSV F protein is in green, anti-β-tubulin in red,
and anti-CX3CR1 in purple. As in panel c, large ovoid structures positive for CX3CR1 immunofluorescence are seen in the side views and located near the
nuclei of infected cells.

doi:10.1371/journal.pone.0130517.g002
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promising vaccine antigen because its sequence is more conserved than that of the G protein,
and because G is heavily glycosylated. However, G has been shown to confer protection in ani-
mal models as well or better than F. For example, virus-like particles (VLPs) comprising G pro-
tein made using a recombinant baculovirus expression system have been shown to be more
protective in mice than similar particles comprising F [41]. Newcastle disease virus-based
VLPs have also been used successfully to protect mice against an RSV challenge [42]. Nanopar-
ticle vaccines comprising the central conserved domain of G have also been tested successfully
in mice [43], potentially mitigating the problematic diversity of G protein sequences by focus-
ing the immune response on a conserved motif directly involved in binding to CX3CR1.

Further studies will be required to confirm the role of CX3CR1 in the binding of RSV to
cilia and in the infection process. However, published research on G as a vaccine antigen and
past serological observations [44, 45] support the notion that targeting both F and G could
afford better prophylaxis against RSV. While an antibody against the F protein is sufficient to
achieve significant protection against hospitalization in infants, our observations suggest a new
mechanism to explain why targeting both viral proteins could afford greater efficacy, regardless
of whether the antibodies are provided directly or elicited by immunization.

Materials and Methods

Human airway epithelial cells
Primary human small airway epithelial cells (SAEC; CC-2547S, Lonza, Walkersville, MD) of a
healthy 11-year-old donor were grown and differentiated in a humidified atmosphere (5%

Fig 3. RSV interaction with HAE cells is strongly enhanced by G protein.Differentiated HAE cells were incubated with RSV wild type or mutants for 2 h
at 37°C and either fixed and immunostained or incubated for several days to allow viral replication. (a) Anti-RSV immunofluorescence micrographs of HAE
cells incubated 2 h with wild type (wt), or mutant RSV not expressing G (ΔG), or expressing truncated G that does not have the CX3Cmotif (ΔGC-term). (b)
Quantification of virus binding using the images from 4 experiments, including those shown in a, by counting pixels of moderate to high brightness (gray
values of 100 to 255). All groups exhibit significantly lower immunofluorescence intensity than wt. (c) Viral titers of apical washes taken daily from infected
HAE cells. Titers of the ΔGmutant are significantly lower than wild type strain MSA1 on days 2, and 4–7, while the ΔGC-term mutant titers are significantly
lower than wt on days 1–5. Error bars represent standard errors of the mean from triplicate measurements. * P < 0.05 by ANOVA.

doi:10.1371/journal.pone.0130517.g003
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CO2, 37°C) as described previously [24, 26]. Briefly, reaching 75–80% confluence in T75 tissue
culture flasks fed with small airway growth medium (SAGM; CC-3281, Lonza) supplemented
with growth factors and hormones (ALI SingleQuots Kit; CC-4538, Lonza), the cells were dis-
sociated with trypsin/EDTA and seeded on the semipermeable membrane of transwell culture
inserts (6.5 mm diameter, 0.4 μm pore size; Corning-Costar, Lowell, MA) coated with rat tail
collagen type 1 (BD Biosciences, Bedford, MA). When confluence was reached, an air-liquid
interface (ALI) was created to trigger differentiation by removing the growth medium from the
apical compartment of the culture inserts set in 24-well plates and replacing growth medium in
the basal compartment with differentiation medium (CC-3281, Lonza) supplemented with the
differentiation inducer (ALI SingleQuots Kit; CC-4538, Lonza). Thereafter, the differentiation
medium was changed in the basal compartment every other day, and the apical compartment
was gently washed with the culture medium once or twice a week to remove accumulated

Fig 4. Antibody to G protein inhibits RSV binding to HAE cells.Wild type RSV was incubated with a negative control antibody or with 131-2G for 1h, and
added to differentiated HAE cells for 2 h. (a) Fluorescence micrograph of cells fixed and immunostained against RSV F incubated with the indicated antibody.
(b) Quantification of immunofluorescence intensity in a by counting pixels in moderate (40–100) or high (101–255) brightness ranges. Incubation with 131-2G
significantly reduces immunofluorescence detection of RSV (P = 0.0001 by two-tailed t-test).

doi:10.1371/journal.pone.0130517.g004
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debris and mucus. The cells fully differentiate in 21 to 25 days of ALI culture into ciliated cells,
goblet cells, basal cells, and non-ciliated columnar cells.

Virus strains
Wild type RSV strain A1 (henceforth MSA1) is a clinical isolate. Its antigenomic cDNA was
synthesized and ligated into a mammalian expression vector to generate the plasmid pMSA1.
To create the G gene deleted (ΔG) and C-terminus truncated (ΔG C-term) constructs, frag-
ments were synthesized spanning G and bordered by the naturally occurring, unique, restric-
tion sites XhoI and BamHI in the MSA1 antigenome. The ~3 Kb ΔG fragment lacked the entire
G gene including the gene start and end signal sites. The ~3.7 Kb ΔG C-term fragment lacked
~60% of the G gene C-terminus starting with the CX3C motif and including the stop codon
and the gene end signal. The fragments were cloned into pMSA1 using the XhoI and BamHI
restriction sites to generate the antigenomic cDNAs pMSA1ΔG and pMSA1ΔG C-term.

The MSA1, ΔG and ΔG C-term viral constructs were recovered from antigenomic cDNAs
using a reverse genetics system similar to that described by Collins et. al.[46], twice plaque
purified, and amplified by two passages on Vero cells. Viral preparations were confirmed by
whole genome sequencing and titers determined by plaque assay on Vero cells.

RSV MSA1 and recombinant strains (ΔG, ΔG C-Term) were propagated in Vero cells (Afri-
can green monkey kidney fibroblasts; American Type Culture Collection CCL 81) maintained
in HyClone SFM4MegaVir (Fisher Scientific, Waltham, MA) supplemented with L-glutamine
(GlutaMax; Life Technologies, Grand Island, NY).

RSV binding and spread
For the virus binding assay, well-differentiated HAE cells were mock-infected or infected in
triplicate with RSV strains (MSA1, ΔG, ΔG C-Term) prepared in differentiation culture
medium at a multiplicity of infection of 3–5. After the incubation for 2 h at 37°C, the inoculum
was removed and the apical surface was washed 4 times with culture medium. In addition, we
performed a separate set of experiments in order to examine the role of the RSV G protein’s
CX3C motif in viral binding and entry, by utilizing anti-RSV G protein antibody (131-2G;
Millipore, Billerica, MA). The virus (MSA1 strain) was incubated with serial dilutions of 131-
2G, ranging from 20 μg mL-1 to 400 μg mL-1, at 37°C for 1 h, and the virus-antibody mixtures
were applied apically on the HAE cells for 2 h, and removed by washing with the culture
medium. Virus particles binding to HAE cells were detected by immunofluorescence. ImageJ
was used to quantify brightness in digital images as well as to count punctate fluorescent
features.

For virus infection and characterization of replication, HAE cells were mock-infected or
infected with RSV strains, and the apical washes were performed (3 times 120 μL, 15 min inter-
val) daily on 1 to 7 days post-infection. Harvested washes were stored at -80°C until use for pla-
que assay (viral titration). In addition, sloughing and cilia beat frequency of HAE cells were
examined in the microscope (Nikon Eclipse Ti-S) over time after infection. Infection patterns
of RSV strains in HAE cells were monitored at various times after infection (2 h; day 1, 3, 5,
and 7) by immunofluorescence.

Immunofluorescence and confocal microscopy
HAE cells were fixed for 15 min with 4% paraformaldehyde (Electron Microscopy Services,
Hatfield, PA) added in the apical compartment of the culture inserts, and permeabilized for 30
min with 0.25% Triton X-100 (Pierce, Rockford, IL) in phosphate-buffered saline (PBS). Fol-
lowing 3 washes with PBS containing 0.25% Triton X-100, the cells were blocked with

CX3CR1 Co-Localizes with Respiratory Syncytial Virus in Lung Cells

PLOS ONE | DOI:10.1371/journal.pone.0130517 June 24, 2015 8 / 13



Superblock solution (Thermo Scientific, Rockford, IL) for 1 h at 37°C. Next, primary antibodies
prepared in Staining buffer (BD Biosciences, San Diego, CA) were applied on the cells over-
night at 4°C or for 2 h at 37°C: anti-RSV F protein (clone 133-1H, mouse IgG2 conjugated with
Alexa Fluor 488; Chemicon) for RSV-infected cells, anti-beta tubulin (clone TUB 2.1, mouse
IgG1 conjugated with Cy3; Sigma-Aldrich) for ciliated cells, anti-Muc5Ac (clone 45M1, mouse
IgG1 conjugated with biotin; abcam, Cambridge, MA) for goblet cells, and anti-CX3CR1 anti-
body (rabbit IgG; Sigma-Aldrich) for localization of CX3CR1, a proposed receptor for RSV
(CX3C motif of RSV G protein).

After washing 3 times, appropriate secondary reagents (Alexa fluor-conjugated secondary
antibodies or streptavidin, Molecular Probes) were applied for 1 h at 37°C: goat anti-rabbit IgG
antibody conjugated with AF555 or AF647 for anti-CX3CR1 primary antibody, and streptavi-
din-AF350 for detection of anti-Muc5Ac primary antibody. Cells were washed 3 times, and
counterstained with DAPI or TO-PRO-3 iodide (Molecular Probes). The membranes with
HAE cells were cut from their supports and mounted on slides with antifade reagent (Prolong
Gold; Molecular Probes, Eugene, OR). Fluorescent images were acquired using a widefield epi-
fluorescence microscope (Nikon Eclipse Ti-S) with NIS-Elements (BR 3.10) software or with a
laser scanning confocal microscope (LSM501META, Carl Zeiss) with Zen software (Carl
Zeiss). The confocal microscope was equipped with 20x, 0.8NA dry or 40x, 1.2NA water
immersion objective, and was configured for sequential channel imaging to minimize cross
talk. Imaging parameters were established to ensure Nyquist sampling, and for a given staining
combination, all imaging parameters were kept constant. Z-stacks were acquired from all sam-
ples to fully capture variations in staining along the apical-basolateral axis of the cells. Acquired
images were subsequently examined and analyzed using Zen software (Carl Zeiss).

Western blotting
Cell lysates from virus cultures grown for 6 days on Vero cells were subjected to SDS-PAGE,
transferred to membranes and probed with a proprietary anti-RSV F antibody (#5353C7), or
anti-M2-1 antibody (Abcam, ab94805), and incubated with a secondary goat anti-mouse alka-
line phosphatase conjugate (Southern Biotech, 1030–01). Anti-G western blot was done with
rabbit anti-RSV-G polyclonal (Sino Biological, 11070-RP02) and incubated with goat anti-rab-
bit secondary antibody (Abcam, ab97048). Bands were visualized using BCIP/NBT. The molec-
ular weight marker used was Precision Plus Protein Dual Color Standards (Bio-Rad, 161–
0374).

Supporting Information
S1 Fig. Immunofluorescence imaging of HAE cells confirms differentiation.HAE cells were
grown in an ALI culture system and analyzed by immunofluorescence. Differentiation was
confirmed by immunodetection of different cell types and susceptibility to infection by RSV
strain MSA1. RSV F protein expression is detected by an anti-RSV F antibody (green). Anti-β-
tubulin is used to identify the motile cilia of ciliated cells (red), and mucin-producing goblet
cells are visualized using an anti-Muc5Ac antibody (blue). Extended spindle shaped Muc5Ac
immunostaining is thought to be due to secreted mucus.
(TIF)

S2 Fig. CX3CR1 in motile cilia of differentiated HAE cells interacts with RSV. As part of a
binding experiment meant to visualize viral particles in association with differentiated HAE
cells, HAE cells were grown in an ALI culture system, the cultures were then incubated with
RSV for 2 hours at 37°C, fixed, and visualized by immunofluorescence and confocal
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microscopy. Two regions of interest are shown as white square outlines in Fig 2a. The top one
is shown in expanded views in Fig 2b, and the bottom one is shown here. Red, green, and pur-
ple images of the same field of view, corresponding to β-tubulin, RSV F, and CX3CR1 immu-
nostaining respectively, are shown individually. Also shown is a merged image revealing the
colocalization of RSV F, CX3CR1, and motile cilia (tubulin). Virions appear to be associated
exclusively with ciliated cells and to preferentially associate with CX3CR1.
(TIF)

S1 File. RSV mutants show expected patterns of G, F, and M2-1 expression.Western blot-
ting of Vero cell lysates infected with RSV ΔG, ΔG C-term, and wild type (MSA1). (Figure A)
Detection of G using anti-G polyclonal antibody. (Figure B) Detection of F using anti-F anti-
body. (Figure C) Detection of M2-1 using anti-M2-1 antibody. Each Figure shows samples
that were run on the same gel and irrelevant lanes are covered with white rectangles. Molecular
weights in kD are shown in Figure A.
(PDF)

S1 Movie. Differentiation of HAE cells can be monitored by observing the beating cilia of
ciliated cells. In this video clip, HAE cells were allowed to differentiate in an ALI culture sys-
tem for 21 days. As a result of differentiation, beating of the motile cilia of ciliated airway cells
can be seen using bright-field microscopy.
(ZIP)

S2 Movie. Three-dimensional video rendering of confocal image stack from a binding
experiment measuring the association of RSVMSA1 to HAE cells. Cells were infected and
processed as described in S2 Fig. Note the association of RSV staining with the apical region of
ciliated cells. (Green, RSV anti-F staining; Red, anti-tubulin staining; Pink, TO-PRO-3.)
(AVI)

S3 Movie. Video of a confocal three-dimensional model of HAE cells 3 days after infection
with RSV strain MSA1, generated as described in Fig 2D.Note the presence of CX3CR1
staining in vesicles proximal to the nuclei of infected cells. (Green, RSV anti-F staining; Red,
anti-tubulin staining; Pink, anti-CX3CR1; Blue, DAPI.)
(AVI)
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